

Principles of writing grants

John P. Kastelic DVM, PhD, Dipl. ACT Professor of Theriogenology Head, Department of Production Animal Health Faculty of Veterinary Medicine

Background

- Funds to support materials, equipment and support for people
- Usually a competition; goal is to support research with substantial impact and reasonable probability of success
- Proposal must indicate potential significance, impact and feasibility
- Detailed description of previous and current work, training and skills, innovative ideas and goals, appropriate study design
- Should be easy to read, concise and attractive.
- Include headlines, subheadings, highlighted parts, figures, data
- Funding source and review panel should match proposal and investigator

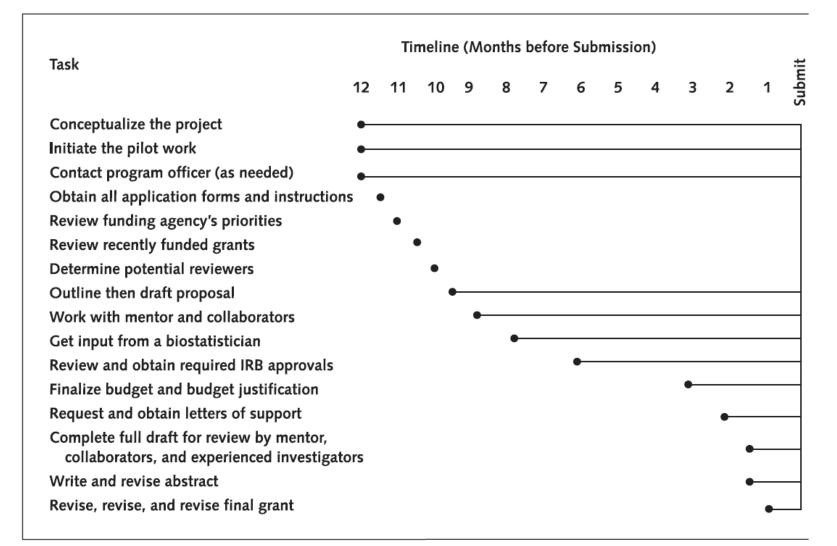
- Identify funding agency or institution with funding opportunities that fit the main idea or purpose of the research
- Ideally, overall objective of research should be an ideal fit
- Strongly discouraged to invent a new project or substantially change a project to match opportunities

Small pilot grants

- Fund early-stage projects to generate preliminary data for a large project
- Collect and analyze preliminary data, proof-of-concept for hypotheses and specific aims of long-term objective
- Overall objective, level of innovation and originality are important
- Projects should be small, focused and short duration
- Internal funds, possibly national or international

Research grants

- Often provide moderate amounts of funding for 3–5 years
- Often require substantial preliminary data
- Significance, innovation, investigator, approach and work environment are seriously considered



Training, education and career development grants

- Mainly for early-career researchers
- Goal is often "to develop an independent research career in ..." plus a description of proposed work
- Clearly stated rationale, specific aims, and expected outcomes
- Candidate's and mentor's credentials are important
- Scientific and technical merit, potential of the candidate, quality of the training plan, quality of the mentorship, research environment, and institutional commitment are important

Timetable and logistics

Ann Intern Med. 2005;142:274-282.

Two (opposite) types of grants

- Hypothesis-driven and hypothesis-generating
- Hypothesis-driven grants are usually preferred for biomedical research
- Hypothesis-driven: hypothesis guides development of entire proposal
- Hypothesis-generating: uses methodology (e.g., genomics) to explore a phenomenon of interest (e.g., gene expression in a specific disease) that will inform future hypotheses to guide further research.

Criteria for a hypothesis-driven grant

- Driven by a hypothesis
- Innovation, mechanistic orientation, appropriate preliminary data and relevant experimental design
- Adequate environment and resources to conduct the work
- Scientific stature of the applicants
- Budget is complete, appropriate and justified
- Milestones and appropriate time-table
- Regulatory requirements (animal care, biohazards, ethics, etc.)

Innovation

- "application of better solutions that meet new requirements, unarticulated needs or existing market needs"
- New and substantive departure from status quo, new opportunities
- Can be technical or conceptual
- To communicate this, there are three critical components:
- (1) description and clarification of status quo through citations
- (2) explicit statement of innovation in the proposed research
- (3) description of the new research horizons, preferably relevant to funding agency's mission, attainable through innovation in this project

Approach

- Brief introduction, preliminary results, detailed research design, and expected outcomes, <u>+</u> literature review and citations
- Introduction and preliminary results are used to provide justification and feasibility of each aim and task.
- Critical to keep it: (1) easy to read, (2) concise and (3) attractive
- Include:
- 1) research design details, including statistical analysis on preliminary data and power and sample size calculations
- (2) description of potential problems and alternative approaches

Abstracts

- Two distinct types:
- (1) scientific abstract, intended for scientific community
- (2) lay person abstract, information for general population
- Capture entire proposal, stand-alone, match target audience
- Usually has long-term goals, current goals, biological/biomedical significance, central hypothesis, 2 to 5 (usually 3) specific aims and their hypotheses, connected to experiments that test the central hypothesis, experimental design and methods, and expected outcomes
- Usually read first and creates 'everlasting first impression'
- Often written last, much can be copy and paste

Rationale (Background)

- **NOT** a literature review!
- Literature is cited, NOT to define what is already KNOWN...
- Rather, it is cited to define what is NOT known
- Rationale for why you are asking the question....Why is it important?
- Requires detailed familiarity with the literature
- Take it apart.....and put it back together

Common problems with the background

- Failed to justify the need for the study
- Provided too much extraneous background information
- Overstated the significance of the study

Hierarchy of goals

- Long-term overall objective, ultimate aim of research program, including proposed project
- Shorter-term goals describe gaps in knowledge/techniques, critical needs
- Specific aims that will fill the gaps and address the critical needs
- Critical to describe relationship between overall objective and specific aims
- Three key points
- (1) Overall objective (what new knowledge or possibility is created)?
- (2) Rationale (critical need and gap in knowledge or technique)
- (3) Specific aims (objectives and milestones that address overall objective)

Specific aims

- Series of experiments, if successful, will conclusively address a specific aspect of the overall objective
- They answer the question "What are you going to do?"
- Details of the how each specific aim will be addressed are in research strategy section

More about aims

- Each of the aims is related to others to ensure a common theme
- Aims must be interdependent but NOT dependent on success of others
- Usually avoid experiments that are correlative in nature and those which will provide results that are observational and poorly mechanistic
- At the end of the proposal, have a brief statement on your vision of how the results of the proposed research will significantly (rather than incrementally) expand the current understanding and address a knowledge gap; why is it so important that the study be performed and thus be funded?

Adding credibility to your proposal

- Illustrate background with clarifying cartoons, e.g., cartoons of pre-existing models and your proposed models (highlighting their novelty)
- Organize preliminary data according to specific aims
- Preliminary (and published) data justifies proposed experiments
- Base your hypothesis on preliminary data to show the hypothesis-driven nature of your research.
- Indicate investigative team has skills and experience in this research
- Experimental design is perhaps the most important section
- State the central hypothesis and how this will be tested by each aim

Central hypothesis

- Narrowest testable outcome of the proposed project in funding period
- Clearly defined in the objectives/specific aims (etc.) as the single overarching question that needs to be answered
- A good hypothesis can be broken into parts, each tested by specific aims.
- E.g., 'the current study is guided by the central hypothesis that drug X interferes with the signaling pathway Y by a mechanism involving Z '
- The central hypothesis is followed by specific aims that break down the central hypothesis into, for example, 3 aims, the hypotheses of which are derived from the central hypothesis

Hypotheses

- Must be based on evidence that is supported by preliminary data and is compatible with established facts
- Novel and stated clearly in the present tense and active voice
- Must lead to observable consequences that are readily tested.
- Evidence, facts, tests and alternatives must be described
- Appropriate form: "the central hypothesis is that A causes B"
- WRONG form: "the central hypothesis is if A causes B" or "the central hypothesis is to prove that A causes B"

Hypotheses and aims

- Must be in clear, easy to understand and quantifiable terms.
- The entire application depends on getting this right!
- Often stated: ...we aim to study..., we aim to measure..., we are the first to measure this and we will measure lots of people, with state-of-the-art technology that we are the first to have...
- Aims are often aimless and hypotheses are often never stated or too vague
- If you don't know what you want, no one else will!

Experimental design and methods

- Content and organization of the Methods section must follow hypotheses
- Each hypothesis is addressed by a given method, with sample size based on power calculations, ideally from pilot data
- Every measurement should be justified and relevant to testing the hypothesis
- Two critical tasks:
- (1) Convey your message to the reviewer within page limits
- (2) convince the reviewer that you are fully capable of accomplishing the specified goals and objectives of the grant within the proposed time frame.

Preliminary studies and pilot work

- Commonly lacking, inadequately described, or not well linked to proposal
- Summarize investigator's previous work related to the project.
- Evidence that: 1) investigator has the expertise and experience; 2) work is feasible, and 3) suitable groundwork has been done.
- Present the specific objectives, methods, results (with brief description and data) and significance

Significance

- Main positive impact of the research project on the subject related to the mission of the funding agency.
- Usually three main components:
- (1) identification of **gaps and critical needs** through background and literature review (with appropriate citations)
- (2) expected contributions to address critical needs and significance of the contributions through focused, highlighted statements
- (3) positive impacts of the project

Why should this grant be supported?

- Clearly highlighted in the three key areas of the grant:
- 1) significance section
- 2) the abstract and project summary section
- 3) section that describes the innovation and approach.

Useful phrases

- Thus, these studies demonstrate the importance of this area [elaborate here]"
- "These studies provide the important background for this study in. . ."
- "The proposed project will build on this previous work [or address limitations in the previous work by]...

Credibility and feasibility

- 1) well-designed studies, 2) preliminary results, 3) appropriate statistical analyses, and 4) potential problems with alternative solutions
- Seek advice on questions reviewers may ask and answer them explicitly
- Potential problems described should have low probability of occurrence; otherwise, they should be considered more seriously in the study design

Budget and personnel

- Based on needs and funding agency's policies and instructions
- Should have clear justification for each cost
- Personnel should have all necessary experience and skills, but avoid redundancy in skills and overlap in tasks
- Clear description of each person's expertise and role in project
- Detailed letters of commitment from collaborators, describing their expertise, role in the project and their commitment

Environment and resources

- Location or environment, available resources (independent and shared facilities), and proximity and access
- Facilities section may describe lab and office space, animal and clinical equipment, and computer resources
- Institutional commitment regarding space, equipment, research time and administrative support, funding, career development opportunities
- Intellectual resources and collaborations
- Reviews for ethics, animal care, etc.

Advice and input from a biostatistician

- Input on the methods and analyses from an experienced biostatistician will enhance the success of your proposal
- Seek advice early on for input about study design, data analysis plans, and sample size calculations

References cited

- Easy to read and uses space wisely (avoid excessive punctuation)
- Critical and up to date references
- Minimize errors

Other considerations

- For many grants, your teaching experience, philosophical approach to teaching and the proposed training environment, are an important part of the grant
- Equity, diversity and inclusion are also becoming very important

General issues and how to avoid them

- Poor layout and formatting, typographical errors, small fonts sizes, excessive topic-specific jargon or abbreviations, and information in wrong
- Give time and attention to proofreading and making grant easy to read, with highlighting and spaces between paragraphs and between sections
- Charts, flow diagrams, pictures, and color
- Enough "white space" for easy reading while still filling each section
- Address study limitations thoroughly and realistically

The review process

- Often provided by funding agency or institution
- Read BEFORE starting to write; target proposal to match expectations and to highlight grant agency priorities and requests.
- AVOID dense writing, complex words or acronyms, slang, complex illustrations
- USE descriptive headlines, simple sentences and purposeful illustrations

Reviewers, committee and chairpersons

- Busy, many grants to review in a limited time
- If possible, determine who is likely to review your proposal
- Unlikely to work in your specialized field, avoid slang or topic-specific abbreviations or terminology
- Entire grant must be easy to understand in a single reading
- Relevance, focus, conciseness, conceptual clarity, and transparent language
- Proposal should be completely self-contained
- You need to convince them of your ideas and your abilities
- DO NOT annoy or frustrate them!

Common review criteria and their meaning (i.e., questions that reviewers should be able to answer)

- Significance: Does the project address a critical problem?
- Innovation: Will there be development of new knowledge or methods?
- Investigators: Are investigators and collaborators capable?
- Approach: Will the proposed research approach accomplish the objectives?
- Environment: Are project site and environment appropriate for success?

Critical elements

- Clear statements about the significance, rationale and innovation
- Detailed description of a research plan that builds upon an innovative idea that addresses a critical need and fills a gap in knowledge or technology
- Convey your enthusiasm and communicate with your reviewers through clear writing and effective illustrations
- Avoid flawed project design, unfocused hypotheses or specific aims, lack of significance or innovation, or overly ambitious project design
- Provide information that facilitates reviewers addressing review criteria
- Describe experience and expertise of investigators, their unique environment and ability to deliver what is proposed

Follow all the rules

- Read and follow all of the guidelines EXACTLY
- Determine requirements for animal care, ethics, etc.
- Follow instructions regarding fonts, margins, format and content
- Grammatical and typographical errors are very negative
- Investigator's name, grant number and page number on every page
- Ensure you have all signatures and approvals
- Do not expect flexibility about submission dates

Useful advice

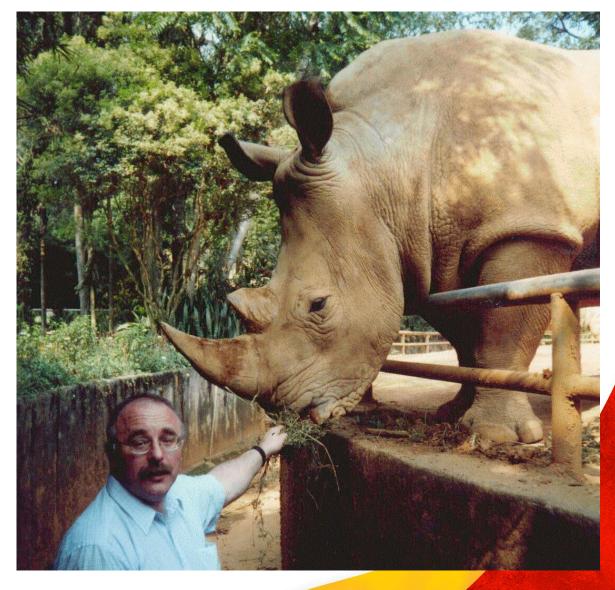
- Create a diversified research portfolio, using funds from various sources to fund specific costs or kinds of research
- Work with office of 'research services and grants' at your institution
- Consult databases regarding potential grant opportunities
- Read successful proposals, seek advice, have people to assist you
- mentors and colleagues to assist you
- Have ample time to work on this
- Most important criteria: innovation, hypothesis-driven, mechanistic, state-of-the-art methodology, feasibility, and biomedical importance

Allow time for prereview and revision

- Internal deadline 4 to 6 weeks before the actual deadline
- Ensure time to preview by mentors and colleagues (2 wk)
- A high-quality product is critical
- Allow ample time to refine budgets and subcontracts, and to obtain letters of support

Getting started

- Writing a grant proposal is similar to writing a manuscript
- Getting started is no fun......
- In fact, it is agony!
- Just sit down and start, write something, anything, just.....write!!



Contact Information

jpkastel@ucalgary.ca

therio@shaw.ca

