

Principles of writing reviews

John P. Kastelic DVM, PhD, Dipl. ACT Professor of Theriogenology Head, Department of Production Animal Health Faculty of Veterinary Medicine

What Is a Review?

- Reviews do not present new data but do provide an assessment of what has already been published or presented
- Two standard types of reviews: narrative reviews, also known as traditional or non-systematic reviews; and systematic reviews, which may or may not be followed by a meta-analysis

Narrative review

- Non-systematic summation and analysis of available literature on specific topic
- No acknowledged formal guidelines for writing narrative reviews
- Usually used for topics for which systematic review format is unsuitable or better covered as a narrative review; e.g., historical perspectives, reviews of research involving various animal models and reviews of patient data from routine (uncontrolled) clinical practice are all considered narrative reviews

Systematic reviews

- More rigorous approach to "reviewing" literature in a well-defined way
- More likely to have considered bias in a methodical way
- Generally considered to represent a better evidence-based source of information than narrative reviews
- Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement has provided well-recognized, standardized guidelines for authors writing systematic reviews since 2009

Narrative versus systematic reviews

Narrative	Systematic
<i>Question</i> : broad (er)	Question: specific
Source: not usually specified	Source: comprehensive; explicit search approach
Selection: potentially biased	Selection: criterion-based; uniformly applied
Evaluation: variable	Evaluation: rigorous and critical
Synthesis: often qualitative	Synthesis: generally quantitative
Inferences: sometimes evidence-based	Inferences: usually evidence-based

Heart, Lung and Circulation (2018) 27, 893–898

Meta-analysis

- Generally an extension of a systematic review
- Data from several, similar studies on essentially the same subject are combined and analyzed, using standardized statistical techniques
- Helpful when smaller sample sizes can be grouped together for a greater chance of a statistically (and hopefully, clinically) significant result

Overview of reviews

- Historically had narrative reviews, then systematic (evidence-based medicine)
- Currently both types of reviews are done, depending on the circumstances
- For clinicians, efficient way of retrieving condensed and "filtered" information
- For students, current review is likely more up-to-date than a textbook
- For researchers, can assist in refining a study hypothesis and in identifying pitfalls to avoid in the conduct of trials.
- Critical reviews can yield new insights and justify future research directions
- In general, reduce information overload
- Attract many citations, boost journal impact factors

When and what review is appropriate?

- Need to know literature, both original research and literature reviews
- Much published research, no substantive reviews, review is indicated
- If not much research, may need to identify pertinent original research questions rather than conduct a review.
- Much research and many reviews, perhaps a review of reviews!

Schematic overview

Published Research

Literature Reviews

- Need for a literature review
- 2. Need to identify research questions
- Need for a review to point out need for more research
- Need for a review of reviews!

* From Pautasso M. PLOS Comput Biol 2013; 9(7):e1003149.

Steps in writing a review

- Overall, 5 steps
- First 4 steps are specific for narrative and systematic reviews
- Step 5 is common for both
- Begin with a narrative review

Step 1: Define topic and audience

- Select a topic of contemporary interest to others
- Ensure that there is enough literature, but not overwhelming
- Avoid too broad of a topic; refine it as needed

Step 2: Search and re-search the literature

- Identify the most relevant literature in your selected topic area
- Keyword searches on relevant databases, including PubMed, EMBASE and the Cochrane Database of Systematic Reviews
- Combine keywords with Boolean operators ("AND", "OR" and "NOT")
- The most recent literature is likely the most relevant (last 5–10 years)
- If you find similar published reviews, may change focus of narrative review
- Be aware of different spellings (e.g., estrogen versus oestrogen)

Databases

On-line Medical Literature Databases — some examples

PubMed	A service of the US National Library of
	Medicine; indexes journal articles listed
	in MEDLINE
EMBASE	A biomedical on-line service of the
	publisher Elsevier; indexes mainly
	European and non-English literature
	sources
Cochrane	Database of Systematic Reviews
DARE	Database of Abstracts of and Reviews
	of Effectiveness

CINAHL Cumulative Index to Nursing and Allied Health Literature Heart, Lung and Circulation (2018) 27, 893–898

Step 3: Be critical

- Avoid just a summary ("reviewing the literature is not stamp collecting")
- Summarize, analyze, critically discuss, identify methodological problems or knowledge gaps (needs to be novel)
- Make notes, record key words, results, outcomes, thoughts (enable you to retrace your steps)

Step 4: Find a logical structure

- Introduction, body and conclusion
- Structure of body can be thematic, chronological, order of complexity, etc.
- Start with critical information, write point-by-point, paragraph-by-paragraph
- Aim for clarity, avoid ambiguity and lack of order or flow
- Make an outline, create diagrams or figures to communicate information
- Make your points clearly and efficiently
- Abstract, summary of background, review aim, literature search strategy, and key messages are generally written last
- Keywords can help your work to be retrieved and cited

Writing a systematic review?

- Step-wise process is similar to a narrative review
- Generally more "ordered" from start to finish

Step 1: Frame a research question

- PICO
- What Person or Patient does this relate to?
- What is the relevant Intervention or cause?
- – Is there something with which to **Compare** the intervention?
- What is the **Outcome** of interest?
- Must identify a topic of interest with sufficient literature to review
- Preliminary "scoping" review can assess available literature
- Avoid a question that yields either too much or not enough data

Step 2: Search and re-search the literature

- Identify relevant literature to be summarized and analyzed, generally via a keyword search on electronic databases <u>+</u> grey ("unpublished") literature
- Usually seeking to present a comprehensive and unbiased coverage of highly reliable, updated information
- Usually search at least 2 or 3 reliable databases
- Devise a systematic review protocol that specifies study selection criteria *a priori* from the systematic, review question, with stated reasons for inclusion and exclusion, before conducting the literature search(es)
- Protocol includes specifying minimal acceptable study design
- Register your review (e.g., Cochrane Collaboration or The International Prospective Register of Systematic Reviews (PROSPERO)
- Verify no other systemic reviews on your topic are underway

Step 3: Be critical

- Summarize the literature in a critical way, to identify bias, and to make a useful recommendations based on your analysis
- Closely follow the PRISMA Statement guidelines
- Design-based quality checklists and critical appraisal guides can help to work out which identified studies carry more weight in making recommendations or may be suitable for meta-analysis
- Data synthesis involves tabulating study characteristics, study quality and outcomes, and risks of publication and other biases in each study
- Simply summarizing is unlikely to be publishable (lack of novelty)

Step 4: Find a logical structure

- Structure is often simpler than a narrative review; usually IMRAD (Introduction, Methods, Results and Discussion) format.
- Introduction: describe the research question
- Methods: sufficient detail to replicate (databases, years searched, keywords, inclusion and exclusion criteria)
- **Results**: report information in a logical, organized, logical grouping, e.g., by similar findings or by level of evidence
- **Discussion**: emphasize what your work adds, strengths and limitations
- Use tables, boxes and diagrams (e.g., PRISMA Flow Diagram)
- Ensure everything is in the correct section
- Avoid conclusions not related to included material

PRISMA Flow diagram

Heart, Lung and Circulation (2018) 27, 893–898

Step 5: Reviewing your review

- Seek feedback and use it to guide your revision
- Read your review aloud to yourself and others, including a non-expert
- DO NOT submit your manuscript without review and revision

Choosing a title

- Clear titles or those that include "systematic review" are recommended
- Titles posed as questions can be appropriate
- Titles that convey a specific and accurate description of manuscript content are more likely to be cited

Contact Information

jpkastel@ucalgary.ca

therio@shaw.ca

